LESSON PLAN: ENGINEERING CHEMISTRY | Discipline:
CHANICAL
ENGG. | Semester:
2 nd | NameoftheTeachingFaculty:SWATILEENA SATPATHY | |----------------------------------|-------------------------------|---| | bject: | No. of days/per
week class | Semester From date : 20/03/2023 To date:27/06/2023 | | NEERING
MISTRY | allotted:02 | No.ofWeeks: 15 | | Veck | ClassDay | Theory | | | 18 | Chemical Bonding: Definition, Types, Electrovalent bond:
NaCl, MgCl ₂ | | 1 st | 2 ^{na} | Covalent Bond wth examples H ₂ ,Cl ₂ ,O ₂ , N ₂ , H ₂ O, CH ₄ , NH ₃ | | | 1 st | Coordinatebond: NH ₄ +,SO ₂ | | 2 nd | 2 ^{na} | Definitions of atomic weight, molecular weight, Equivalentweight | | | 1 st | Determination of equivalent weight of Acid, Base and Salt. | | 3rd | 2 ^{na} | Modes of expression of the concentrations (Molarity) With Simple Problems | | | 1 st | Modes of expression of the concentrations (Normality& Molality) With Simple Problems | | 4 th | 2 ^{na} | nH of solution (definition with simple numerical) | | | 1 st | Importance of pH in industry (sugar, textile, paper industries only) | | 5 th | 2 nd | Definition of Mineral, ores, gangue with example. Distinction between Ores And Minerals | | 6 th | 1 st | Steps of Metallurgy: Ore Dressing, Concentration of Ore (Gravity Separation, | | | 2 nd | Concentration of Ore (Froth floatation & leaching) | | | 1 st | Oxidation (Calcinations, Roasting) | | - Cul | - nd | Reduction (Smelting, Definition & examples of flux, slag) | | 7 th | 2 nd | Refining of the metal (Electro refining, & Distillation only) | | 8 th | 1 st | | | | 2 nd | Definition of alloy. Types of alloys (Ferro, Non Ferro & Amalgam) with example | | | 1 st | and uses of Brass, Bronze, Anneo, Buratanna | | 9 th | 2 nd | Sources of water, Soft water, Hard water, hardness, types of Hardness (temporary or carbonate and permanent or non-carbonate) | | 10 th | 1 st | Removal of hardness by little soda method, not little | | | 2 nd | Removal of hardness by time soda method (Cold time | | 11 th | 1 st | Advantages of Hot lime over cold time process. | | | 2 nd | Organic Ion exchange method (principle, process, and regeneration of exhausted resins) | | | 1 st | Definition of lubricant, Types (solid, liquid and semi solid with examples only) | |-----------------|-----------------|--| | ch | 2 nd | Specific uses of Lubricants (Graphite, Oils, Grease), Purpose of Inbrication. | | | 1 st | Definition and classification of fuel. | | 3 th | 2 nd | Definition of calorific value of fuel, Choice of good fuel. | | | 1 st | Liquid: Diesel, Petrol and Kerosene- Composition and uses. | | 1 th | 2 nd | Gaseous: Producer gas and Water gas (Composition and uses) | | | 1 st | Elementary idea about LPG, CNG and Coal gas (Composition and uses only) | | 5 th | 2 nd | Bio Fertilizers: Definition, examples and uses. | Swatileena Satpathy Lect. In Chemistry Govt. Polytechnic Angul ## LESSON PLAN: ENGINEERING CHEMISTRY | Discipline:
CHANICAL
ENGG. | Semester:
2 nd | NameoftheTeachingFaculty:TUSHAR RANJAN MOHANTA | |----------------------------------|--------------------------------------|---| | ibject: | No.ofdays/Per Week class allotted:02 | Semester From date: 20/03/2023 To date:27/06/2023 | | GINEERING
HEMISTRY | _ | No.ofWeeks: 15 | | ek | ClassDay | Theory | | | 1 st | Introduction ,Fundamental particles : Electron, Proton& Neutron (mass and charge) | | l st | 2 nd | Rutherford's Atomic model(Experiment, postulates), Failures of Rutherford's Atomic model | | 2nd | 1 st | Atomic mass and mass number, Definition, examples and properties of Isotopes, isobars and isotones, Bohr's atomic model (Postulates only) | | | 2 nd | Bohr-Bury scheme, Aufbau'sprinciple | | | 1 st | Hund'srule, Electronicconfiguration(upto atomic no. 30) | | 3 rd | 2 ^{na} | Concept of Arrhenius, Bronsted Lowry Theory with examples (Postulates and limitations only). | | 4 th | 1st | Lewis theory for acid and base with examples (Postulates and limitations only). Neutralization of acid & base. | | 7 | 2 nd | Types of salts (Normal, acidic, basic, double, complex and mixed Salts, definitions with 2 examples from each). | | 5 th | 151 | Definition and types (Strong & weak) of Electrolytes with example.
Electrolysis (Principle & process) with example of NaCl (fused and aqueous solution). | | | 2 nd | Faraday's 1st law of Electrolysis(Statement, mathematical expression, numerical) | | 6 th | 1 st | Faraday's 2nd law of Electrolysis (Statement, Mathematical expression, numerical), Industrial application of Electrolysis-Electroplating(Zinc only) | | | 2 ^{na} | Corrosion : Definition & Types, Atmospheric Corrosion | | | 151 | Waterline corrosion. Mechanism of rusting of Iron only. Protection from Corrosion by (i) Alloying and (ii) Galvanization | | 7 th | 2 nd | Saturated and Unsaturated Hydrocarbons (Definition with example) | | 8 th | 1 st | Aliphatic and Aromatic Hydrocarbons (Huckle's rule only). Difference between Aliphatic and aromatic hydrocarbons | | | 2 nd | IUPAC system of nomenclature of Alkane | | | 1 st | IUPAC system of nomenclature of Alkane-examples | | 9th | 2 nd | IUPAC system of nomenclature of Alkene | | 10 th | 1 st | IUPAC system of nomenclature of Alkene-examples | | | 2 nd | IUPAC system of nomenclature of Alkyne | | | 1 st | IUPAC system of nomenclature of Alkyne-examples | | 11 th | 2nd | IUPAC system of nomenclature of alkyl halide and alcohol | ## LESSON PLAN: ENGINEERING CHEMISTRY | | | <u> </u> | |----------------------------------|--------------------------------------|---| | Discipline:
CHANICAL
ENGG. | Semester:
2" ^d | NameoftheTeachingFaculty:TUSHAR RANJAN MOHANTA | | ibject: | No.ofdays/Per Week class allotted:02 | Semester From date: 20/03/2023 To date: 27/06/2023 | | GINEERING
JEMISTRY | omes unoned,02 | No.ofWeeks: 15 | | ek | ClassDay | Theory | | | 1 st | Introduction ,Fundamental particles : Electron, Proton& Neutron (mass and charge) | | 1 st | 2 nd | Rutherford's Atomic model (Experiment, postulates), Failures of Rutherford's Atomic model | | 2nd | 1 st | Atomic mass and mass number, Definition, examples and properties of Isotopes, isobars and isotones, Bohr's atomic model (Postulates only) | | | 2 nd | Bohr-Bury scheme, Aufbau'sprinciple | | 3rd | 1 st | Hund'srule, Electronicconfiguration(upto atomic no. 30) | | | 2 ^{na} | Concept of Arrhenius, Bronsted Lowry Theory with examples (Postulate and limitations only). | | 4 th | 1 st | Lewis theory for acid and base with examples (Postulates and limitations only). Neutralization of acid & base. | | | 2 nd | Types of salts (Normal, acidic, basic, double, complex and mixed Salts, definitions with 2 examples from each). | | 5 th | 151 | Definition and types (Strong & weak) of Electrolytes with example.
Electrolysis (Principle & process) with example of NaCl (fused and aqueous solution). | | | 2 nd | Faraday's 1st law of Electrolysis(Statement, mathematical expression, numerical) | | 6 ^{ւհ} | 1 st | Faraday's 2nd law of Electrolysis (Statement, Mathematical expression, numerical), Industrial application of Electrolysis-Electroplating(Zinc only) | | | 2"" | Corrosion : Definition & Types, Atmospheric Corrosion | | | 151 | Waterline corrosion. Mechanism of rusting of Iron only. Protection from Corrosion by (i) Alloying and (ii) Galvanization | | 7^{th} | 2 nd | Saturated and Unsaturated Hydrocarbons (Definition with example) | | 8 _{th} | 1 st | Aliphatic and Aromatic Hydrocarbons (Huckle's rule only). Difference between Aliphatic and aromatic hydrocarbons | | | 2 nd | IUPAC system of nomenclature of Alkane | | 9th | 1 st | IUPAC system of nomenclature of Alkane-examples | | | 2 nd | IUPAC system of nomenclature of Alkene | | 10 th | 1 st | IUPAC system of nomenclature of Alkene-examples | | | 2 nd | IUPAC system of nomenclature of Alkyne | | Eng. A | 1 st | IUPAC system of nomenclature of Alkyne-examples | | 11 th | 2 nd | IUPAC system of nomenclature of alkyl halide and alcohol | | 1 st | Uses of some common aromatic compounds (Benzene, Toluene, BHC, Phenol, Naphthalene, Anthracene and Benzoic acid) in daily life. | |-------------------|---| | 2 nd | Definition of Monomer, Polymer, Homo-polymer, Co-polymer and Degree of polymerization. | | 1 st | Difference between Thermosetting and Thermoplastic | | 2 nd | Composition and uses of Polythene, & Poly-Vinyl Chloride | | 1 st | Composition and uses of Bakelite | | 2 nd . | Definition of Elastomer (Rubber). Natural Rubber (it's draw backs) | | 1 st | Vulcanisation of Rubber. Advantages of Vulcanised rubber over raw rubber. | | 2nd | Pesticides: Insecticides, herbicides, fungicides-Examples and uses | | | 1 st 2 nd 1 st 2 nd . | Tushar Raman Wohanta Sr. Lect. In Math & Sc. (Chemistry) Govt. Polytechnic Angul